Exploring three-dimensional implicit wavefield extrapolation with the helix transform
نویسندگان
چکیده
Implicit extrapolation is an efficient and unconditionally stable method of wavefield continuation. Unfortunately, implicit wave extrapolation in three dimensions requires an expensive solution of a large system of linear equations. However, by mapping the computational domain into one dimension via the helix transform, we show that the matrix inversion problem can be recast in terms of an efficient recursive filtering. Apart from the boundary conditions, the solution is exact in the case of constant coefficients (that is, a laterally homogeneous velocity.) We illustrate this fact with an example of three-dimensional velocity continuation and discuss possible ways of attacking the problem of lateral variations.
منابع مشابه
Exploring three - dimensional implicit wave eldextrapolation with the helix
Implicit extrapolation is an eecient and unconditionally stable method of wave-eld continuation. Unfortunately, implicit wave extrapolation in three dimensions requires an expensive solution of a large system of linear equations. However, by mapping the computational domain into one dimension via the helix transform, we show that the matrix inversion problem can be recast in terms of an eecient...
متن کاملStable explicit depth extrapolation of seismic wavefields
Stability has traditionally been one of the most compelling advantages of implicit methods for seismic wavefield extrapolation. The common 4S-degree, finite-difference migration algorithm, for example, is based on an implicit wavefield extrapolation that is guaranteed to be stable. Specifically, wavefield energy will not grow exponentially with depth as the wavefield is extrapolated downwards i...
متن کاملImplicit finite difference in time-space domain with the helix transform
Spectral factorization is a method of creating causal filters which have causal inverses. I use spectral factorization of an implicit finite-difference stencil of the two-way wave equation approximation in order to model wave propagation by a sequence of deconvolutions. I deconvolve this filter’s coefficients with the wavefield propagating in a constant velocity medium using the helix approach....
متن کاملSeismic Depth Imaging with the Gabor Transform
Wavefield extrapolation by spatially variable phase shift is currently a migration tool of importance. In this paper, we present a new prestack seismic migration algorithm using the Gabor transform with application to the Marmousi acoustic dataset. The imaging results show a very promising depth imaging algorithm, which is competitive with the best depth imaging algorithms. The Gabor depth imag...
متن کاملImplicit 3-D depth migration by wavefield extrapolation with helical boundary conditions
Wavefield extrapolation in the (ω−x) domain provides a tool for depth migration with strong lateral variations in velocity. Implicit formulations of depth extrapolation have several advantages over explicit methods. However, the simple 3-D extension of conventional 2-D wavefield extrapolation by implicit finite-differencing requires the inversion of a 2-D convolution matrix which is computation...
متن کامل